Linear dimension reduction and Bayes classification

نویسندگان

  • Henry P. Decell
  • Patrick L. Odell
  • William A. Coberly
چکیده

This paper develops an explicit expression for a compression matrix T of smallest possible left dimension k consistent with preserving the n-variate normal Bayes assignment of X to a given one of a finite number of populations and the k-variate Bayes assignment of TX to that population. The Bayes population assignment of X and TX are shown to be equivalent for a compression matrix T explicitly calculated as a function of the means and covariances (known) of the given populations. 1. Mathematics Department, University of Houston 2. Programs in Mathematical Sciences, Univ. of Texas at Dallas 3. Department of Mathematics, University of Tulsa This work was partially supported by Johnson Space Center Contract'NAS-9-15000.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FADA: An Efficient Dimension Reduction Scheme for Image Classification

This paper develops a novel and efficient dimension reduction scheme--Fast Adaptive Discriminant Analysis (FADA). FADA can find a good projection with adaptation to different sample distributions and discover the classification in the subspace with naïve Bayes classifier. FADA overcomes the high computational cost problem of current Adaptive Discriminant Analysis (ADA) and also alleviates the o...

متن کامل

Linear and Nonlinear Dimensionality Reduction in fMRI Data for Picture-Sentence Classification

fMRI data is represented in a space with very high dimensionality. Because of this, classifiers such as SVM and Naive Bayes may overfit this data. Dimensionality reduction methods are intended to extract features from data in a high dimensional space. Training a classifier on data in a lower dimension may improve the true error of the classifier beyond the performance obtained by training in a ...

متن کامل

Diagnosis of Diabetes Using an Intelligent Approach Based on Bi-Level Dimensionality Reduction and Classification Algorithms

Objective: Diabetes is one of the most common metabolic diseases. Earlier diagnosis of diabetes and treatment of hyperglycemia and related metabolic abnormalities is of vital importance. Diagnosis of diabetes via proper interpretation of the diabetes data is an important classification problem. Classification systems help the clinicians to predict the risk factors that cause the diabetes or pre...

متن کامل

Applying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification

Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states.  Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...

متن کامل

A pairwise subspace projection method for multi-class linear dimension reduction

Linear feature extraction is commonly applied in an all-atonce way, meaning that a single trasformation is used for all the data regardless of the classes. Very good results can be achieved with this approach when the classification problem involves just a few classes. Nevertheless, when the number of classes grows is often difficult to find a low dimensional subspace while preserving the error...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 13  شماره 

صفحات  -

تاریخ انتشار 1981